Performance Analysis of Tyler's Covariance Estimator
نویسندگان
چکیده
منابع مشابه
The incredible shrinking covariance estimator
Covariance estimation is a key step in many target detection algorithms. To distinguish target from background requires that the background be well-characterized. This applies to targets ranging from the precisely known chemical signatures of gaseous plumes to the wholly unspecified signals that are sought by anomaly detectors. When the background is modelled by a (global or local) Gaussian or ...
متن کاملPerformance analysis of joint DOA/TOA estimator
In many applications such as radar and mobile communication, the multipath propagation e5ects are described as a sum of contributions of a large number of wavefronts that arrives at the sensor array in clusters of rays, distributed around a nominal direction of the signal sources. Based on this observation and on the work of Bengtsson and Ottersten (Proceeding of Norsig-98, IEEE Nordic Signal P...
متن کاملThe Sandwich (robust Covariance Matrix) Estimator
The sandwich estimator, often known as the robust covariance matrix estimator or the empirical covariance matrix estimator, has achieved increasing use with the growing popularity of generalized estimating equations. Its virtue is that it provides consistent estimates of the covariance matrix for parameter estimates even when a parametric model fails to hold, or is not even specified. Surprisin...
متن کاملThe minimum weighted covariance determinant estimator
In this paper we introduce weighted estimators of the location and dispersion of a multivariate data set with weights based on the ranks of the Mahalanobis distances. We discuss some properties of the estimators like the breakdown point, influence function and asymptotic variance. The outlier detection capacities of different weight functions are compared. A simulation study is given to investi...
متن کاملA Nonparametric Covariance Estimator for Spatial Models
The covariances in spatial models are estimated by linear smoothing of products of residuals. In the model no parametric assumptions are made about the mean function or the spatial dependence. Both are assumed to be smooth. Smoothing is based on local polynomials, though any linear smoother is possible to use. Expressions for the mean and the covariance of this estimator are developed and a ver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2015
ISSN: 1053-587X,1941-0476
DOI: 10.1109/tsp.2014.2376911